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Outline

Counting statistics with equal o; by least squares approach.
Minimum variance. Recursive nature.

Counting statistics with unequal ;. Least squares, mini-
mum variance approach. Recursive nature.

Linear process with measurement noise only — estimating
initial vs. current state.

Random walk with zero measurement noise. Estimating
the initial position.

Random walk, estimating the current position.

Random walk with measurement noise, estimating the
current state.

Preview of next lecture.



Counting statistics; sample mean and
variance — equal o?

T, =0+ & Y = T,

<& >=0, <& >= 076;; = d;; and gaussian distribu-
tion by Bayes' theorem

prior
vees YUn )y IN x . .
f(@o(n)|y1, s yn) < f(Y1, - Ynlzo(n)) normalization
2 n ’
~ H?:;[G_é[xi—xo(n)] — e_ 2 i=1 é[%‘—%(n)]

Maximum likelihood

2

X’(n)=—Inf = %Z i - ;O(n)] .




Ox?/xo(n) = 0 =>state estimate

1 n
zo(n) = - Z T;,
i=1

The variance of the estimate at this stage is (uncorrelated)

V(n) = o*(n) = 3 02(Oumo(n) /02 =

n
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Minimum variance approach

n
— § Pili,
1=1

with Z?:l pi =1, o’ =1

sz V(n Zﬂz D p
1=1

Vi(n)/0pr =0 =

A
Pk =75

Y

or pp = 1/nforall k —zo(n) =L 3"z V(n)=1/n



Recursive Kalman filter form

(n+ 1Daxp(n+1) = sz—l—xnﬂ

1

Wiy (n) + n—_HCCn_|_1

ro(n+ 1) = 1

or

zo(n +1) = zo(n) + KnTni1 — zo(n)],
Kalman gain K,




Counting statistics for unequal o?

Uncorrelated but different confidence: < &;&; >= 0',,;25723'

Example: (21, x2,x3), 24

Take 21 — (331—|—332-|—333)/3, 22 — I4. O'% = 1/3, O'% =1
Then xo(4) = (21/0% + zg/ag) / (1/0% + 1/0%)

= (1 +x2+x3+ 14)/4
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V _
() E:Z;11/0?7
Again, take
zo(n) = szﬂ?i,
i=1
with Z?:l Pi = 1
V¥(n) = oipi =AY pi
1=1 1=1
A 1/0?

Same.



Recursive Kalman filter form for
unequal o?

ro(n+ 1) = xo(n) + Kp|xpi1 — zo(n)]

with
o 1 B 1
n — 92 n 1 ’
2 n o1 1 Ori1D i1z +1

K,=V(n+1)/o2,, and

— == +1 or K, = :
Ky ( o ) Kn—1 ' Kp_1+ 07%+1/‘77%

The recursion in terms of the variance

111
Vin+1) V(n) J%Jrl'

with K,, = V(n+1)/o7; K, tends to decrease with n
(more data)

f 02,1 < oz, then K,, will be larger than if 07| > 02



One dimensional example of estimating
the initial state and the current state

Simple stochastic system with measurement noise

Lk+1 — VL,
Yk = Tk + Nk-
< MM >= Ok
o 1 - k 2
X — 5 (/y o — yk) ,
k=1
Ox?/0xg = 0 gives
. ZZ:1 'Vk?/k

ro(n) = =5 :
S A2k
v > 1..weighted toward recent results, v < 1... weighted

toward initial results. Recursive form

n+1
§i n
woln+1) = xo<n>+22—1 2k 4 A2nt2 (Yn+1— +1$0(n)) :




An estimate of x,, rather than zy.

k=1

S Y e,
R S

Exactly what you might guess. Recursive form:

1
Tpy1(n+1) = /Yxn(n)+zz_l y2k—2n—2 4 1 (Ynt1 = v2n(n)).

Notice Kﬁ”(n) — 7"+1Kf§0(n).
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Random walk with zero measurement
error — estimating the initial position

Counting statistics, with only measurement noise, is:
Lk4+1 — Tk,
Yk = Tk + Nk

Random walk problem (Wiener process, Brownian motion),
with only dynamical noise:

Tri1 = T + &k,
Yk = Tk

< & >= 0, < &€, >= 020k To estimate the initial
position. Ship wrecks at xg — to find the ship.

k—1
Yk = o+ Y & = To+ (-
i=0

Cx has < (p >=10



And n X n covariance matrix

Crt =< (1l >= Crp =< k() >

k [
=D <&&>= ogmin(k,l),

i=0 j=0
l.e. ~ _
1 1 1 1 1
1 2 2 2 2
1 2 3 3 3
2
C=00|1 9 3 4 4
12 3 4 - n |

Least squares in terms of the inverse of the covariance matrix

D=C"!

X° = % Z Z CeDriC = % Z Z(yk—wo)Dkl(yl —x0).

k=11=1 k=11=1



_ 2k=1221—1 Dy
D k=1 2i—1 Dl

o 0 0 -1 1

In the estimate, the value of 08 cancels.

ZDkl = 1, ZDklyl =11 zo(n) =1
Kl Kl

Recursive zo(n + 1) = x9(n) + Kn|ynt1 — xo(n)] with
K, =0.



Try minimum variance again

— Zpiyi
i=1
= Cijpipj = XD pi;
ij i

Vi(n)/Opr=0 =

Y Crjpj = A/2
J

p1 1
)\ P2 )\ 1
= 5 ZD” or E = §D E
Pn 1
A1 >.; Dij
a s Pi =
2 Z’L] DU Zzg DU

)

— Y
Vi(n) =2 Cijpipj = 011 = 1. A third approach — next

lecture.



Random walk with zero measurement
noise — estimating the current position

Trr1 = T + Ek,
Yk = Tk

Ship wrecks at xg, but we wish to find the position of the
survivor.

Y — Tn — Zgz — xn Cka

< Sz >— O, < gzgj >— 005@] new COld old.

nlnl

n—1ln—1
— %Z ZCkalCl Z Z Tn—Yk) Dri(Tn—11).
k=1 1=1

klll



n—1n—1

Cr =< GG >= ) > <&& >

i=k j=I
n—1n—1
= 00 Y Y by = op[n — max(k,1)],
i=k j=I
‘n—1 n—2 n-—3 1 ]
n—2 n—2 n—3 1
C=0;|n-3 n—3 n—3 1
1 1 1 Iy
1 -1 0 0 .
-1 2 -1 0

Recursive zg(n+1) = zo(n)+ Ky |y, —xo(n)] with K,, =1
Now.



Random walk with measurement noise
— estimating the current position

Estimating the current position of the shipwreck survivor
Thy1 = Tk + &k,

Yk = Tk + Nk.

Solve for yi, in terms of x,,:

n—1

ykzwn—Z§i+ﬁk=$n—Ck+ﬂk-
i—k

—ZZ — Yk)Dri(xn — u1),

D = C_l, with O =< (_Ck + 77k>(_Cl + m) > Again
using< &r&1 >= 080ki, < Mem >= 010k, < G >= 0
we have, fork =1,....m

M



015;7) = og[n — max(k,1)] + 076,

or

-
p—
-

oo O O O




NEXT LECTURE

Probabilistic (Bayesian) approach

Application to higher dimension, with dynamical and mea-
surement noise

Application to control theory

Application to nonlinear problems — the extended Kalman
filter



Outline - Second Lecture

Review of previous lecture

Estimation of M correlated variables. Alternate method
based on the trace of the covariance matrix.

Alternate method for the random walk with zero measure-
ment noise. Estimating the initial or current position

Probabilistic (Bayesian) approach

Alternate method, for random walk with measurement
noise added

Higher dimensional stochastic process with measurement
noise

Application to control theory — the separation theorem

Nonlinear stochastic systems — the Extended Kalman Filter



REVIEW: ESTIMATING A SCALAR
VARIABLE

Measurement of a scalar — measurement noise but no dynam-
ical noise

n

2 = Z |z —222(”)]

1=1

2

i1 %i/0}
To(n) = Z@_ll 1/0?

Minimum variance form xzo(n) = > pix;, with
Vi(n) =Y oipi =X pi
i=1 i=1

Recursive form: xq(n + 1) = zo(n) + K, |z, 1 — 20(n)
Innovation, Kalman gain (matrix)
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ESTIMATION OF A CORRELATED
HIGHER DIMENSIONAL VARIABLE

. .
X' =Xo+ &'

with < €' >=0 < 5;’655 >= 5130,@

Xo = (Z Di> Z D'x" (1)

1=1

Note: this gives sample mean if all D; are equal.

Also, it D; are diagonal, this gives the weighted sample mean.



MINIMUM VARIANCE ALTERNATIVE
— TRACE OF THE COVARIANCE
MATRIX

Xo(n) = zn:Aixi zn:Ai = |
=1

1=1

C(?o)kl =< 0% k0To, >. Its trace is

T =< dwopdzon >=< |6%o|> >
k

T= Y Ay, AL, <€8>=Y" A AL Ch

1Jkmn tkmn

T =trace) . (ACAT) . Minimize T



S IPEVCHES v or

tkmn

Differentiating with respect to A%, 0T*/0A*, =0

2A"

—1
1 E : )
an nb_)\ab A:§LD LZQ(D)

Al= (Z Di) : D’

(

same as before



Random walk, estimating the current
state — another alternate

Recall yp, = x,, — Z:”:_kl Ei=xy, — Cp on

=3 S @ -y D) )

n—1 n—2 n-—3 1
n—2 n—2 n—3 1
C=05|n—-3 n—-3 n—3 1 (4)
: 1
1 1 1 1 |
Alternatively,
1 n—1
2 _ 2
X _20_(%Z€z
k=1

1
=55 (12— Y1)’ + oo (Un-1 = Yn—2)* + (20 — yn—1)2]
200
Obviously gives z,(n) = Yn_1. (o5 -y &n—1) —

(Coy -y Cn—1) — change of variable.



PROBABILISTIC (BAYESIAN)
APPROACH — counting statistics

Bayes'’

 (y1—7)*

2
201

f(zoly1) o< f(y1]zo) o e

f(zoly1,y2) o< f(ye|zo, y1) f(zoly1)
f(y2|zo,y1) = f(y2]z0)

f(zoly1) o< f(y2|mo) f(y1|mo)

Similarly f(zoly1,y2,--.s¥n) < f(yn|zo) - - - f(y2|20) f (y1|70)

 (yn—=p)* _(yz—ﬂgo)2 _(y1—9;o)2
x e 20% co.e 202 e 201

Likelihood \? = —In f oS0, % . SAME



RANDOM WALK

_(211—1190)2

2
201

f(zoly1) o< f(y1]xo) o e

f(zoly1,y2) o< f(ye|zo, y1) f(zoly1)

o< f(y2|y1) f(zolyr) (Markov) o< f(yz2|y1)f(y1]wo)

f(@oly1, y2, -, yn) < f(Ynlyn—1) - f(y2ly1) f(zoly1)

_(yn—y2n—1)2 _(yz—y1)2 _(y1—fl?0)2
f x e 20'n_1 e 20'% e 20(2)
n—1 2 2
2 n f o (Ykt+1 — Yi) i (y1 — o)
X f Z 20‘2 20'(2)

k=1



Random walk with measurement noise
added — alternate approach

Trt1 = Tk + &k,

Y = Tk + Nk.

Then yp41 — yr = &k + Mk+1 — Mk and

n—1n—1

=D Wkt — ) D —w)  yn = wa(n)
k=1 =1

with Cr; =< (&g + M1 — 1) (§ + 141 — mi) > tridiagonal
C —

2 -1 0 0 100 0
-1 2 -1 0 - 0 1 0 0
oil 0 -1 2 1 - |+0p2| 0 0 1 0




Minimize with respect to x,(n):

n—2
(ajn(n) — yn—l) Dn—l,n—l + Z Dn—l,k: (yk—{—l — ykz) =0
k=1
Limit 1: no measurement noise 0727 =0. C= agl
or D = ag2| ..... Xp,(N) = y,_1
Limit 2: no dynamical noise 0727 =0 ..
2 —1 0 0 |




Recall one dimensional system with
measurement noise

Recall 1D system with measurement noise < ngm; >= g

Lk4+1 = VTk,
Yk = Tk + Nk
n+1

B n
ol 1) = zom) b g (1 =7 ()

1
Tnt1(n+l) = 75137%(”)“"22_1 ~Zh—2n—2 | | (Ynt1 = 7Zn(n))

Estimates xg(n) and z,(n) = " zo(n) .. KEn) =
,yn—i—lK;fL?O(n)_

_ 1 _ " _
Also,  V(zo) = ST A2k V(rn,) = ST 2k

vV (x0(n))... Recursive
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Higher dimensional system with
measurement noise - est. for xy(n)

Xk_|_1 = Akxk (5)

with measurement < n,inlj >= 00k

Vi = Mpxp, 4+ 7 g (6)

X = Ug,0Xo = Ap—1Ak—2...ApXo

1 <& 1 <&
9 9 9
X = 5};_1”7/%” =3 E IMiUg ox0 — y&l|©,  (7)

k=1

n —1 n
Xo(n) = [Z NZ,ONk,Ol > NEoyr  Nigo=MgUpp.
k=1 k=1
(8)



Xo(n+1) = xo(n) + Ky [yni1 — Mn+1Un+1,OXO(n)] (9)

-1 _ p-—-1 T
Pn+1 — Pn + Nn+1,0Nn+1,0

Kn = Pn+1N£—|—1,O C(a:o(n)) = Pn

Xo(n) propagated n =+ n+1 by Up110

Measurement applied My, 11U, 4+1,0X0(n) is best guess for
Yni1 before measurement



Higher dimensional system with
measurement noise - est. for x,(n)

1 — 1 —
k=1

Zuanl\l;{,nl\lk,nuo,n ZU NT Vs
k=1
(10)

or

~

Xn(n> — Un,OXO(n) Kn — Un—l—l,OKn

~

Xpa1(n+ 1) = Apx,(n) + Ky, [yn+1 - Mn+1Aan(n)] 3
(11)

X, (n) is advanced in time x,(n) — Apx,(n) and the
measurement operation M, 11 is done. This is the best guess
for y a1 before y,, 11 is measured



Continuous time advance, discrete time
measurement formulation

‘fl_’; —Ax+ £()  <&&>=GC

yie = Mxy + 7k <mm; >=Cq

1. Time advance of estimate and covariance between mea-
surements

% _dcC -

2. Adjust estimate and covariance at new measurement

Kp = CO(t)MT [MC™ (t)MT 4+ C]

Cltr) = [I = KpgM] C) (t)
X = XI(<; ) + Ky (Yk; MA( )>

A](f ) is the best guess for y;. at ti before its measurement;
C ) is the covariance matrix at t; before measurement

Of Yk-



Application to control theory —
separation theorem

%
Xk+1 = Arxie + f L+ Ug (12)

Vi = Mexg + 7k (13)
Continuum model...
dx —
- = A(t)x + & (t) + u(t)
y(t) = x(t) = M(t)x(t) + 77 (t) special case

Optimal control =minimizing for example

J = A 1(x(), Q()x(t)) + (u(t), R(t)u(t))} dt



%
Minimizing J determines u|x] optimally for £ (¢) = 0. De-

gree of control vs. cost.

For ?(t) # 0 do the following:

e Find optimal control u[x(t), t] for ?(t) =0

e Use Kalman filter on y(%) to determine the optimal esti-
mate X(t)

e Add control u(x(t),t) based on estimate to equation
dx/dt = ...

X Allows one to design controller and estimator independently
X More general form with measurement noise exists too

X A similar formulation exists for the discrete system



Extended Kalman Filter — for nonlinear
systems

Most real problems (systems and measurements) are nonlinear

dx —
E — a(X7 t) T 5 (t)

yr = h(xg) + 77 ()

e Advance the estimate between measurements by the non-
linear dynamics

d%/dt = a(%, 1)

e Advance the covariance between measurements by
dC/dt = A(X,t)C + CAT(X,1)+Co

with 4;; = Oa;/0x; LINEARIZE with respect to x



e Kalman gain

K = COt)MT(R7))
—1
x [M(i,g—>)c<—>(tk>|\/|T(§,§—>> +C

where M;; = Oh;/0x;.. LINEARIZE with respect to

x. Covariance similarly

e Update estimate after new data: X, = §I(<;_) +

K (ve — B )

o Caveat: dx/dt = a(x,t) = a(X,t)+(x—X)-Va(xX,t)+

e Caveat: gaussian statistics remains gaussian only if C
remains small —if linearizations hold over the range specified

by C

e Caveat: what if the model [i.e. a(x,t) | is known poorly?
Model errors



SUMMARY

Least squares approach

Recursive least squares. Kalman gain <+ covariance matrix;
'innovation’

Minimum variance - minimum trace of the covariance
matrix

Estimating the initial state or the current state

Only measurement noise — initial and current state
estimates are related by the dynamics

Only dynamical noise — initial and current state esti-
mates are dominated by nearby data

Bayesian approach and maximum likelihood — least
squares

Higher dimension — principles the same (recursion for esti-
mate and covariance matrix; relation with Kalman gain)

Control theory and the separation theorem



e Extended Kalman Filter — advance estimate nonlinearly,
covariance matrix by linearized system. Caveats:

1) small covariance for linearization to be accurate ...
otherwise not gaussian

2) systematic errors — model errors



